GREAP Platform Visualization

GREAP: a comprehensive enrichment analysis software for human genomic regions

Yang Y, Qian F, Li X, Li Y, Zhou L, et al.

Brief Bioinform · 2022 Aug 12
DOI: 10.1093/bib/bbac329

Full Article
CATA Database Interface

CATA: a comprehensive chromatin accessibility database for cancer

Zhou J, Li Y, Cao H, Yang M, Chu L, et al.

Database · 2020 Jan 17
DOI: 10.1093/database/baab085

Full Article
CATA Database Interface

Integrative Epigenomic Analysis of Transcriptional Regulation of Human CircRNAsr

Li XC, Tang ZD, Peng L, Li YY, Qian FC, Zhao JM, Ding LW, Du XJ, Li M, Zhang J, Bai XF, Zhu J, Feng CC, Wang QY, Pan J, Li CQ

Front Genet, 2021 Jan 25
DOI:10.3389/fgene.2020.590672

Full Article
CATA Database Interface

TRlnc: a comprehensive database for human transcriptional regulatory information of lncRNAs

Li Y, Li X, Yang Y, Li M, Qian F, Tang Z, Zhao J, Zhang J, Bai X, Jiang Y, Zhou J, Zhang Y, Zhou L, Xie J, Li E, Wang Q, Li C

Brief Bioinform, 2021 Mar 22
DOI:10.1093/bib/bbaa011

Full Article
CATA Database Interface

HiFreSP: A novel high-frequency sub-pathway mining approach to identify robust prognostic gene signatures

Li M, Zhao J, Li X, Chen Y, Feng C, Qian F, Liu Y, Zhang J, He J, Ai B, Ning Z, Liu W, Bai X, Han X, Wu Z, Xu X, Tang Z, Pan Q, Xu L, Li C, Wang Q, Li E

Brief Bioinform, 2020 Jul 15
DOI:10.1093/bib/bbz078

Full Article
CATA Database Interface

SEanalysis: a web tool for super-enhancer associated regulatory analysis.

Qian FC, Li XC, Guo JC, Zhao JM, Li YY, Tang ZD, Zhou LW, Zhang J, Bai XF, Jiang Y, Pan Q, Wang QY, Li EM, Li CQ, Xu LY, Lin DC

Nucleic Acids Res, 2019 Jul 2
DOI:10.1093/nar/gkz302

Full Article
CATA Database Interface

SEdb: a comprehensive human super-enhancer database

Jiang Y, Qian F, Bai X, Liu Y, Wang Q, Ai B, Han X, Shi S, Zhang J, Li X, Tang Z, Pan Q, Wang Y, Wang F, Li C

Nucleic Acids Res, 2019 Jan 8
DOI:10.1093/nar/gky1025

Full Article

The rapid development of genomic high-throughput sequencing has identified a large number of DNA regulatory elements... GREAP provides widespread annotation and enrichment analysis of genomic regions. To reflect the significance of enrichment analysis, we used the hypergeometric test and also provided a Locus Overlap Analysis.

GREAP Graphical Abstract

CATA provides a user-friendly interface for exploring chromatin accessibility profiles across multiple cancer types... The database integrates ATAC-seq and DNase-seq data from various sources, providing a comprehensive resource for cancer epigenetics research.

CATA Graphical Abstract

The rapid development of genomic high-throughput sequencing has identified a large number of DNA regulatory elements with abundant epigenetics markers, which promotes the rapid accumulation of functional genomic region data. The comprehensively understanding and research of human functional genomic regions is still a relatively urgent work at present. However, the existing analysis tools lack extensive annotation and enrichment analytical abilities for these regions. Here, we designed a novel software, Genomic Region sets Enrichment Analysis Platform (GREAP), which provides comprehensive region annotation and enrichment analysis capabilities. Currently, GREAP supports 85 370 genomic region reference sets, which cover 634 681 107 regions across 11 different data types, including super enhancers, transcription factors, accessible chromatins, etc. GREAP provides widespread annotation and enrichment analysis of genomic regions. To reflect the significance of enrichment analysis, we used the hypergeometric test and also provided a Locus Overlap Analysis. In summary, GREAP is a powerful platform that provides many types of genomic region sets for users and supports genomic region annotations and enrichment analyses. In addition, we developed a customizable genome browser containing >400 000 000 customizable tracks for visualization. The platform is freely available at http://www.liclab.net/Greap/view/index.

CATA Graphical Abstract

The rapid development of genomic high-throughput sequencing has identified a large number of DNA regulatory elements with abundant epigenetics markers, which promotes the rapid accumulation of functional genomic region data. The comprehensively understanding and research of human functional genomic regions is still a relatively urgent work at present. However, the existing analysis tools lack extensive annotation and enrichment analytical abilities for these regions. Here, we designed a novel software, Genomic Region sets Enrichment Analysis Platform (GREAP), which provides comprehensive region annotation and enrichment analysis capabilities. Currently, GREAP supports 85 370 genomic region reference sets, which cover 634 681 107 regions across 11 different data types, including super enhancers, transcription factors, accessible chromatins, etc. GREAP provides widespread annotation and enrichment analysis of genomic regions. To reflect the significance of enrichment analysis, we used the hypergeometric test and also provided a Locus Overlap Analysis. In summary, GREAP is a powerful platform that provides many types of genomic region sets for users and supports genomic region annotations and enrichment analyses. In addition, we developed a customizable genome browser containing >400 000 000 customizable tracks for visualization. The platform is freely available at http://www.liclab.net/Greap/view/index.

CATA Graphical Abstract

The rapid development of genomic high-throughput sequencing has identified a large number of DNA regulatory elements with abundant epigenetics markers, which promotes the rapid accumulation of functional genomic region data. The comprehensively understanding and research of human functional genomic regions is still a relatively urgent work at present. However, the existing analysis tools lack extensive annotation and enrichment analytical abilities for these regions. Here, we designed a novel software, Genomic Region sets Enrichment Analysis Platform (GREAP), which provides comprehensive region annotation and enrichment analysis capabilities. Currently, GREAP supports 85 370 genomic region reference sets, which cover 634 681 107 regions across 11 different data types, including super enhancers, transcription factors, accessible chromatins, etc. GREAP provides widespread annotation and enrichment analysis of genomic regions. To reflect the significance of enrichment analysis, we used the hypergeometric test and also provided a Locus Overlap Analysis. In summary, GREAP is a powerful platform that provides many types of genomic region sets for users and supports genomic region annotations and enrichment analyses. In addition, we developed a customizable genome browser containing >400 000 000 customizable tracks for visualization. The platform is freely available at http://www.liclab.net/Greap/view/index.

CATA Graphical Abstract

The rapid development of genomic high-throughput sequencing has identified a large number of DNA regulatory elements with abundant epigenetics markers, which promotes the rapid accumulation of functional genomic region data. The comprehensively understanding and research of human functional genomic regions is still a relatively urgent work at present. However, the existing analysis tools lack extensive annotation and enrichment analytical abilities for these regions. Here, we designed a novel software, Genomic Region sets Enrichment Analysis Platform (GREAP), which provides comprehensive region annotation and enrichment analysis capabilities. Currently, GREAP supports 85 370 genomic region reference sets, which cover 634 681 107 regions across 11 different data types, including super enhancers, transcription factors, accessible chromatins, etc. GREAP provides widespread annotation and enrichment analysis of genomic regions. To reflect the significance of enrichment analysis, we used the hypergeometric test and also provided a Locus Overlap Analysis. In summary, GREAP is a powerful platform that provides many types of genomic region sets for users and supports genomic region annotations and enrichment analyses. In addition, we developed a customizable genome browser containing >400 000 000 customizable tracks for visualization. The platform is freely available at http://www.liclab.net/Greap/view/index.

CATA Graphical Abstract

The rapid development of genomic high-throughput sequencing has identified a large number of DNA regulatory elements with abundant epigenetics markers, which promotes the rapid accumulation of functional genomic region data. The comprehensively understanding and research of human functional genomic regions is still a relatively urgent work at present. However, the existing analysis tools lack extensive annotation and enrichment analytical abilities for these regions. Here, we designed a novel software, Genomic Region sets Enrichment Analysis Platform (GREAP), which provides comprehensive region annotation and enrichment analysis capabilities. Currently, GREAP supports 85 370 genomic region reference sets, which cover 634 681 107 regions across 11 different data types, including super enhancers, transcription factors, accessible chromatins, etc. GREAP provides widespread annotation and enrichment analysis of genomic regions. To reflect the significance of enrichment analysis, we used the hypergeometric test and also provided a Locus Overlap Analysis. In summary, GREAP is a powerful platform that provides many types of genomic region sets for users and supports genomic region annotations and enrichment analyses. In addition, we developed a customizable genome browser containing >400 000 000 customizable tracks for visualization. The platform is freely available at http://www.liclab.net/Greap/view/index.

CATA Graphical Abstract

Contact us

📍 School of Medical Informatics,
Harbin Medical University, Daqing Campus,
Daqing 163319, China

PI: Li Xue Cang

📧 E-mail: eazier@qq.com

© 2025 Baidu - GS(2023)3206号 - 甲测资字11111342 - 京ICP证030173号 - Data © 百度智图

Copyright © 2022 by Li Xue Cang Lab. All Rights Reserved